Ai Research
Ai Research
Deep learning and AI research with GPU optimization
Overview
Domain Pack: ai-research
Version: 1.0.0
Categories: computer-science
Maintainers: AWS Research Wizard Team
Quick Start
# Deploy this domain pack
aws-research-wizard deploy --domain ai-research --size medium
# Get detailed information
aws-research-wizard config info ai-research
# List available workflows
aws-research-wizard workflow list --domain ai-research
Software Stack
Core Packages
- python: python@3.11.0 %gcc@11.4.0 +ssl+zlib
- py-torch: py-torch@2.0.1 %gcc@11.4.0 +cuda+nccl
- py-tensorflow: py-tensorflow@2.13.0 %gcc@11.4.0 +cuda
- py-jax: py-jax@0.4.13 %gcc@11.4.0 +cuda
- py-numpy: py-numpy@1.24.3 %gcc@11.4.0 +blas+lapack
- py-scipy: py-scipy@1.11.1 %gcc@11.4.0
- py-pandas: py-pandas@2.0.3 %gcc@11.4.0
- py-scikit-learn: py-scikit-learn@1.3.0 %gcc@11.4.0
- py-matplotlib: py-matplotlib@3.7.1 %gcc@11.4.0
- py-jupyter: py-jupyter@1.0.0 %gcc@11.4.0
And 3 more packages…
Optimization Settings
- Compiler: gcc@11.4.0
- Target Architecture: x86_64_v3
- Optimization Flags: -O3 -march=native
AWS Infrastructure
Instance Types
- Small:
g5.xlarge
- Medium:
g5.4xlarge
- Large:
p4d.24xlarge
Storage Configuration
- Type: gp3
- Size: 1000 GB
- IOPS: 16000
- Throughput: 1000 MB/s
Research Workflows
This domain pack includes 2 pre-configured research workflows:
Distributed Training
Multi-GPU distributed deep learning training
# Run this workflow
aws-research-wizard workflow run distributed_training --domain ai-research
- Input Data: s3://aws-research-data/imagenet/
- Expected Output: Trained model checkpoints
Hyperparameter Tuning
Large-scale hyperparameter optimization
# Run this workflow
aws-research-wizard workflow run hyperparameter_tuning --domain ai-research
- Input Data: s3://aws-research-data/ml-datasets/
- Expected Output: Optimal hyperparameter configurations
Cost Estimates
Workload Size | Estimated Daily Cost |
---|---|
Small | $25-50/day |
Medium | $40-120/day |
Large | $200-800/day |
!!! note “Cost Optimization” These estimates assume on-demand pricing. Significant savings are possible with:
- **Spot Instances**: 70-90% savings for fault-tolerant workloads
- **Reserved Instances**: 30-60% savings for predictable usage
- **Savings Plans**: 20-72% savings with flexible commitment
Example Configuration
# ai-research-research-config.yaml
domain: ai-research
size: medium
aws:
region: us-east-1
availability_zone: us-east-1a
compute:
instance_type: g5.4xlarge
instance_count: 1
storage:
type: gp3
size_gb: 1000
Getting Help
- 📖 Domain-Specific Documentation: tutorials/ai-research/
- 💬 Community Support: GitHub Discussions
- 🐛 Issues: GitHub Issues
Related Domain Packs
Other domain packs in Computer Science: