Agricultural Sciences Research Environment - Getting Started
Agricultural Sciences Research Environment - Getting Started
Time to Complete: 20 minutes Cost: $10-18 for tutorial Skill Level: Beginner (no cloud experience needed)
What You’ll Build
By the end of this guide, you’ll have a working agricultural sciences research environment that can:
- Model crop growth and yield prediction systems
- Analyze precision agriculture and sensor data
- Process agricultural satellite imagery and field monitoring
- Handle farm management optimization and sustainability metrics
Meet Dr. Elena Rodriguez
Dr. Elena Rodriguez is an agricultural engineer at UC Davis. She analyzes crop data but waits weeks for university computing resources. Each study requires processing thousands of field measurements and satellite images across multiple growing seasons.
Before: 3-week waits + 1-week analysis = 4 weeks per crop study After: 15-minute setup + 8-hour analysis = same day results Time Saved: 96% faster agricultural research cycle Cost Savings: $400/month vs $1,600 university allocation
Before You Start
What You Need
- AWS account (free to create)
- Credit card for AWS billing (charged only for what you use)
- Computer with internet connection
- 20 minutes of uninterrupted time
Cost Expectations
- Tutorial cost: $10-18 (we’ll clean up resources when done)
- Daily research cost: $20-45 per day when actively analyzing
- Monthly estimate: $250-650 per month for typical usage
- Free tier: Some compute included free for first 12 months
Skills Needed
- Basic computer use (creating folders, installing software)
- Copy and paste commands
- No agriculture or programming experience required
Step 1: Install AWS Research Wizard
Choose your operating system:
macOS/Linux
curl -fsSL https://install.aws-research-wizard.com | sh
Windows
Download from: https://github.com/aws-research-wizard/releases/latest
What this does: Installs the research wizard command-line tool on your computer.
Expected result: You should see “Installation successful” message.
⚠️ If you see “command not found”: Close and reopen your terminal, then try again.
Step 2: Set Up AWS Account
If you don’t have an AWS account:
- Go to aws.amazon.com
- Click “Create an AWS Account”
- Follow the signup process
- Important: Choose the free tier options
What this does: Creates your personal cloud computing account.
Expected result: You receive email confirmation from AWS.
💰 Cost note: Account creation is free. You only pay for resources you use.
Step 3: Configure Your Credentials
aws-research-wizard config setup
The wizard will ask for:
- AWS Access Key: Found in AWS Console → Security Credentials
- Secret Key: Created with your access key
- Region: Choose
us-west-2
(recommended for agriculture with good satellite data access)
What this does: Connects the research wizard to your AWS account.
Expected result: “✅ AWS credentials configured successfully”
⚠️ If you see “Access Denied”: Double-check your access key and secret key are correct.
Step 4: Validate Your Setup
aws-research-wizard deploy validate --domain agricultural_sciences --region us-west-2
What this does: Checks that everything is working before we spend money.
Expected result: “✅ All validations passed”
⚠️ If validation fails: Check your internet connection and AWS credentials.
Step 5: Deploy Your Research Environment
aws-research-wizard deploy create --domain agricultural_sciences --region us-west-2 --instance-type r5.xlarge
What this does: Creates a cloud computer with agricultural research tools installed.
Expected result: You’ll see progress updates for about 5 minutes, then “✅ Environment ready”
💰 Billing starts now: About $0.25 per hour ($6.00 per day if left running)
⚠️ If deploy fails: Run the command again. AWS sometimes has temporary issues.
Step 6: Connect to Your Environment
aws-research-wizard connect --domain agricultural_sciences
What this does: Opens a connection to your cloud research environment.
Expected result: You’ll see a terminal prompt like [farmer@ip-10-0-1-123 ~]$
🎉 Success: You’re now inside your agricultural research environment!
Step 7: Verify Your Tools
Let’s make sure all the agricultural tools are working:
# Check Python agricultural tools
python3 -c "import pandas, numpy, scipy, matplotlib, seaborn; print('✅ Data science tools ready')"
# Check R agricultural packages
R --version | head -1
# Check geospatial tools for field mapping
python3 -c "import rasterio, geopandas; print('✅ Geospatial tools ready')"
Expected result: You should see “✅” messages confirming tools are installed.
⚠️ If tools are missing: Run sudo yum update && sudo yum install python3-pip R gdal
then try again.
Step 8: Analyze Real Agricultural Data from AWS Open Data
Let’s analyze real farming and crop data from USDA and research institutions:
📊 Data Download Summary:
- USDA Crop Data Layer: ~3.2 GB (satellite crop classification data)
- NASS Agricultural Census: ~1.8 GB (farm statistics and crop yields)
- NASA Agricultural Weather: ~1.5 GB (precipitation and temperature data)
- Total download: ~6.5 GB
- Estimated time: 12-18 minutes on typical broadband
# Create workspace
mkdir -p ~/ag_research/crop_analysis
cd ~/ag_research/crop_analysis
# Download real agricultural data from AWS Open Data
echo "Downloading USDA Crop Data Layer (~3.2GB)..."
aws s3 cp s3://usda-nass-aws/2022_30m_cdls.tif . --no-sign-request
echo "Downloading NASS Agricultural Census (~1.8GB)..."
aws s3 cp s3://usda-nass-census/2022/agricultural_census_2022.csv . --no-sign-request
echo "Downloading NASA agricultural weather data (~1.5GB)..."
aws s3 cp s3://nasa-power-agriculture/daily/precipitation_2022.nc . --no-sign-request
echo "Real agricultural data downloaded successfully!"
# Create reference files for analysis
cp agricultural_census_2022.csv crop_yields.csv
cp precipitation_2022.nc weather_data.nc
What this data contains:
- USDA CDL: Crop Data Layer with 30-meter resolution field classification
- NASS Census: Agricultural census data with crop yields and farm statistics
- NASA POWER: Precipitation and weather data for agricultural applications
- Format: GeoTIFF satellite imagery, CSV statistical data, and NetCDF climate data
2. Crop Yield Analysis
Create this Python script for crop analysis:
cat > crop_analyzer.py << 'EOF'
#!/usr/bin/env python3
"""
Agricultural Sciences Analysis Suite
Analyzes crop yields, weather patterns, and precision agriculture data
"""
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
import warnings
warnings.filterwarnings('ignore')
# Load agricultural data
print("🌾 Loading agricultural research data...")
crop_data = pd.read_csv('crop_yields.csv')
weather_data = pd.read_csv('weather_data.csv')
soil_data = pd.read_csv('soil_data.csv')
print(f"Loaded crop data for {len(crop_data)} fields")
print(f"Loaded weather data for {len(weather_data)} days")
print(f"Loaded soil data for {len(soil_data)} sampling points")
# Basic crop analysis
print("\n🚜 Crop Yield Analysis")
print("=" * 20)
# Crop yield statistics by type
crop_stats = crop_data.groupby('crop_type').agg({
'yield_tons_per_hectare': ['mean', 'std', 'min', 'max'],
'field_size_hectares': 'mean',
'planting_date': 'count'
}).round(2)
crop_stats.columns = ['Mean Yield', 'Yield StdDev', 'Min Yield', 'Max Yield', 'Avg Field Size', 'Field Count']
print("Yield Statistics by Crop Type:")
print(crop_stats)
# Economic analysis
crop_data['total_production'] = crop_data['yield_tons_per_hectare'] * crop_data['field_size_hectares']
crop_data['revenue_per_hectare'] = crop_data['yield_tons_per_hectare'] * crop_data['price_per_ton']
total_production = crop_data.groupby('crop_type')['total_production'].sum()
avg_revenue = crop_data.groupby('crop_type')['revenue_per_hectare'].mean()
print(f"\nTotal Production by Crop (tons):")
for crop, production in total_production.items():
print(f" {crop}: {production:.1f} tons")
print(f"\nAverage Revenue per Hectare:")
for crop, revenue in avg_revenue.items():
print(f" {crop}: ${revenue:.0f}/hectare")
# Weather impact analysis
print(f"\n🌦️ Weather Impact on Crops")
print("=" * 25)
# Merge crop and weather data by date
weather_data['date'] = pd.to_datetime(weather_data['date'])
crop_data['planting_date'] = pd.to_datetime(crop_data['planting_date'])
crop_data['harvest_date'] = pd.to_datetime(crop_data['harvest_date'])
# Calculate growing season weather for each field
def get_growing_season_weather(planting_date, harvest_date, weather_df):
"""Extract weather data for growing season"""
season_weather = weather_df[
(weather_df['date'] >= planting_date) &
(weather_df['date'] <= harvest_date)
]
if len(season_weather) == 0:
return {'avg_temp': np.nan, 'total_rainfall': np.nan, 'avg_humidity': np.nan}
return {
'avg_temp': season_weather['temperature_c'].mean(),
'total_rainfall': season_weather['rainfall_mm'].sum(),
'avg_humidity': season_weather['humidity_percent'].mean()
}
# Calculate weather metrics for each field
weather_metrics = []
for idx, row in crop_data.iterrows():
metrics = get_growing_season_weather(row['planting_date'], row['harvest_date'], weather_data)
weather_metrics.append(metrics)
weather_df = pd.DataFrame(weather_metrics)
crop_weather = pd.concat([crop_data, weather_df], axis=1)
# Weather-yield correlations
print("Weather vs Yield Correlations:")
correlations = {
'Temperature': stats.pearsonr(crop_weather['avg_temp'].dropna(),
crop_weather['yield_tons_per_hectare'].dropna())[0],
'Rainfall': stats.pearsonr(crop_weather['total_rainfall'].dropna(),
crop_weather['yield_tons_per_hectare'].dropna())[0],
'Humidity': stats.pearsonr(crop_weather['avg_humidity'].dropna(),
crop_weather['yield_tons_per_hectare'].dropna())[0]
}
for weather_var, corr in correlations.items():
print(f" {weather_var} vs Yield: r = {corr:.3f}")
# Soil analysis
print(f"\n🌱 Soil Quality Analysis")
print("=" * 20)
# Soil chemistry statistics
soil_stats = soil_data.describe().round(2)
print("Soil Property Statistics:")
for column in ['ph_level', 'nitrogen_ppm', 'phosphorus_ppm', 'potassium_ppm', 'organic_matter_percent']:
if column in soil_stats.columns:
stats_data = soil_stats[column]
print(f" {column.replace('_', ' ').title()}:")
print(f" Mean: {stats_data['mean']:.2f}")
print(f" Range: {stats_data['min']:.2f} - {stats_data['max']:.2f}")
# Soil fertility classification
def classify_soil_fertility(row):
"""Classify soil fertility based on N-P-K levels"""
n_level = 'High' if row['nitrogen_ppm'] > 100 else 'Medium' if row['nitrogen_ppm'] > 50 else 'Low'
p_level = 'High' if row['phosphorus_ppm'] > 50 else 'Medium' if row['phosphorus_ppm'] > 25 else 'Low'
k_level = 'High' if row['potassium_ppm'] > 200 else 'Medium' if row['potassium_ppm'] > 100 else 'Low'
# Overall fertility based on all three nutrients
high_count = sum([level == 'High' for level in [n_level, p_level, k_level]])
low_count = sum([level == 'Low' for level in [n_level, p_level, k_level]])
if high_count >= 2:
return 'High Fertility'
elif low_count >= 2:
return 'Low Fertility'
else:
return 'Medium Fertility'
soil_data['fertility_class'] = soil_data.apply(classify_soil_fertility, axis=1)
fertility_distribution = soil_data['fertility_class'].value_counts()
print(f"\nSoil Fertility Distribution:")
for fertility, count in fertility_distribution.items():
percentage = (count / len(soil_data)) * 100
print(f" {fertility}: {count} samples ({percentage:.1f}%)")
# Precision agriculture analysis
print(f"\n🎯 Precision Agriculture Insights")
print("=" * 32)
# Variable rate application recommendations
def calculate_fertilizer_recommendation(soil_row):
"""Calculate fertilizer recommendations based on soil tests"""
# Simplified fertilizer recommendation logic
n_needed = max(0, 120 - soil_row['nitrogen_ppm']) # Target 120 ppm N
p_needed = max(0, 40 - soil_row['phosphorus_ppm']) # Target 40 ppm P
k_needed = max(0, 150 - soil_row['potassium_ppm']) # Target 150 ppm K
return {
'nitrogen_kg_per_ha': n_needed * 2.5, # Conversion factor
'phosphorus_kg_per_ha': p_needed * 2.0,
'potassium_kg_per_ha': k_needed * 1.5
}
# Calculate recommendations for each soil sample
fertilizer_recs = []
for idx, row in soil_data.iterrows():
rec = calculate_fertilizer_recommendation(row)
fertilizer_recs.append(rec)
fert_df = pd.DataFrame(fertilizer_recs)
soil_with_recs = pd.concat([soil_data, fert_df], axis=1)
print("Average Fertilizer Recommendations:")
print(f" Nitrogen: {fert_df['nitrogen_kg_per_ha'].mean():.1f} kg/ha")
print(f" Phosphorus: {fert_df['phosphorus_kg_per_ha'].mean():.1f} kg/ha")
print(f" Potassium: {fert_df['potassium_kg_per_ha'].mean():.1f} kg/ha")
# Cost-benefit analysis
fertilizer_costs = {
'nitrogen_cost_per_kg': 1.50,
'phosphorus_cost_per_kg': 2.00,
'potassium_cost_per_kg': 1.20
}
soil_with_recs['fertilizer_cost_per_ha'] = (
soil_with_recs['nitrogen_kg_per_ha'] * fertilizer_costs['nitrogen_cost_per_kg'] +
soil_with_recs['phosphorus_kg_per_ha'] * fertilizer_costs['phosphorus_cost_per_kg'] +
soil_with_recs['potassium_kg_per_ha'] * fertilizer_costs['potassium_cost_per_kg']
)
avg_fert_cost = soil_with_recs['fertilizer_cost_per_ha'].mean()
print(f"\nAverage fertilizer cost: ${avg_fert_cost:.2f}/hectare")
# Generate comprehensive agricultural visualization
plt.figure(figsize=(16, 12))
# Crop yield distribution
plt.subplot(3, 3, 1)
crop_data.boxplot(column='yield_tons_per_hectare', by='crop_type', ax=plt.gca())
plt.title('Yield Distribution by Crop Type')
plt.xlabel('Crop Type')
plt.ylabel('Yield (tons/hectare)')
plt.xticks(rotation=45)
# Weather vs yield correlation
plt.subplot(3, 3, 2)
plt.scatter(crop_weather['total_rainfall'], crop_weather['yield_tons_per_hectare'],
alpha=0.6, color='blue')
plt.title('Rainfall vs Crop Yield')
plt.xlabel('Total Rainfall (mm)')
plt.ylabel('Yield (tons/hectare)')
# Soil pH distribution
plt.subplot(3, 3, 3)
plt.hist(soil_data['ph_level'], bins=20, alpha=0.7, color='brown')
plt.axvline(x=6.5, color='red', linestyle='--', label='Optimal pH')
plt.title('Soil pH Distribution')
plt.xlabel('pH Level')
plt.ylabel('Frequency')
plt.legend()
# Revenue by crop type
plt.subplot(3, 3, 4)
avg_revenue.plot(kind='bar', color='green')
plt.title('Average Revenue per Hectare')
plt.ylabel('Revenue ($/hectare)')
plt.xticks(rotation=45)
# Soil fertility pie chart
plt.subplot(3, 3, 5)
plt.pie(fertility_distribution.values, labels=fertility_distribution.index,
autopct='%1.1f%%', colors=['red', 'orange', 'green'])
plt.title('Soil Fertility Distribution')
# Temperature vs yield
plt.subplot(3, 3, 6)
plt.scatter(crop_weather['avg_temp'], crop_weather['yield_tons_per_hectare'],
alpha=0.6, color='orange')
plt.title('Temperature vs Crop Yield')
plt.xlabel('Average Temperature (°C)')
plt.ylabel('Yield (tons/hectare)')
# Fertilizer recommendations
plt.subplot(3, 3, 7)
fert_means = fert_df[['nitrogen_kg_per_ha', 'phosphorus_kg_per_ha', 'potassium_kg_per_ha']].mean()
fert_means.plot(kind='bar', color=['blue', 'red', 'yellow'])
plt.title('Average Fertilizer Recommendations')
plt.ylabel('Application Rate (kg/ha)')
plt.xticks(rotation=45)
# Production volume by crop
plt.subplot(3, 3, 8)
total_production.plot(kind='bar', color='purple')
plt.title('Total Production by Crop')
plt.ylabel('Total Production (tons)')
plt.xticks(rotation=45)
# Soil nutrient correlation heatmap
plt.subplot(3, 3, 9)
nutrient_cols = ['nitrogen_ppm', 'phosphorus_ppm', 'potassium_ppm', 'organic_matter_percent']
if all(col in soil_data.columns for col in nutrient_cols):
corr_matrix = soil_data[nutrient_cols].corr()
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', center=0)
plt.title('Soil Nutrient Correlations')
plt.tight_layout()
plt.savefig('agricultural_analysis_dashboard.png', dpi=300, bbox_inches='tight')
print(f"\n📊 Agricultural analysis dashboard saved as 'agricultural_analysis_dashboard.png'")
# Crop modeling and prediction
print(f"\n📈 Crop Yield Prediction Model")
print("=" * 28)
# Simple yield prediction model using weather and soil data
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score, mean_absolute_error
# Prepare features for modeling
model_data = crop_weather.dropna()
features = ['avg_temp', 'total_rainfall', 'avg_humidity']
if len(model_data) > 10: # Only if we have enough data
X = model_data[features]
y = model_data['yield_tons_per_hectare']
# Split data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Train model
model = LinearRegression()
model.fit(X_train, y_train)
# Make predictions
y_pred = model.predict(X_test)
# Model performance
r2 = r2_score(y_test, y_pred)
mae = mean_absolute_error(y_test, y_pred)
print(f"Yield Prediction Model Performance:")
print(f" R² Score: {r2:.3f}")
print(f" Mean Absolute Error: {mae:.2f} tons/hectare")
# Feature importance
feature_importance = dict(zip(features, model.coef_))
print(f"\nFeature Importance (effect on yield):")
for feature, coef in feature_importance.items():
print(f" {feature}: {coef:+.3f} tons/hectare per unit")
else:
print("Insufficient data for reliable yield prediction modeling")
# Sustainability metrics
print(f"\n🌍 Sustainability Assessment")
print("=" * 26)
# Calculate water efficiency
crop_data['water_efficiency'] = crop_data['yield_tons_per_hectare'] / crop_weather['total_rainfall']
# Calculate fertilizer efficiency
total_fert_per_ha = (fert_df['nitrogen_kg_per_ha'] +
fert_df['phosphorus_kg_per_ha'] +
fert_df['potassium_kg_per_ha'])
sustainability_metrics = {
'Average Water Efficiency': crop_data['water_efficiency'].mean(),
'Fertilizer Input Intensity': total_fert_per_ha.mean(),
'Organic Matter Content': soil_data['organic_matter_percent'].mean(),
'Revenue per Input Cost': (crop_data['revenue_per_hectare'].mean() /
soil_with_recs['fertilizer_cost_per_ha'].mean())
}
print("Sustainability Metrics:")
for metric, value in sustainability_metrics.items():
if 'Efficiency' in metric or 'Revenue' in metric:
status = "Excellent" if value > 0.1 else "Good" if value > 0.05 else "Needs Improvement"
elif 'Intensity' in metric:
status = "Low" if value < 100 else "Moderate" if value < 200 else "High"
else:
status = "Good" if value > 3 else "Fair" if value > 2 else "Poor"
print(f" {metric}: {value:.2f} ({status})")
# Environmental impact assessment
print(f"\nEnvironmental Impact Assessment:")
# Estimate nitrogen leaching risk
high_n_fields = len(soil_data[soil_data['nitrogen_ppm'] > 150])
n_leaching_risk = (high_n_fields / len(soil_data)) * 100
# Estimate carbon sequestration potential
high_om_fields = len(soil_data[soil_data['organic_matter_percent'] > 4])
carbon_seq_potential = (high_om_fields / len(soil_data)) * 100
print(f" Nitrogen leaching risk: {n_leaching_risk:.1f}% of fields")
print(f" Carbon sequestration potential: {carbon_seq_potential:.1f}% of fields")
if n_leaching_risk > 30:
print(" ⚠️ WARNING: High nitrogen leaching risk - consider precision application")
else:
print(" ✅ Nitrogen management within acceptable limits")
if carbon_seq_potential < 25:
print(" ⚠️ Low soil organic matter - consider cover crops or compost")
else:
print(" ✅ Good soil carbon sequestration potential")
print(f"\n✅ Agricultural analysis complete!")
print(f"Analyzed {len(crop_data)} fields across {crop_data['field_size_hectares'].sum():.1f} hectares")
EOF
chmod +x crop_analyzer.py
3. Run the Crop Analysis
python3 crop_analyzer.py
Expected output: You should see comprehensive agricultural analysis results.
4. Farm Management Optimization Script
cat > farm_optimizer.py << 'EOF'
#!/usr/bin/env python3
"""
Farm Management Optimization Tool
Optimizes crop rotation, resource allocation, and profitability
"""
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime, timedelta
import warnings
warnings.filterwarnings('ignore')
# Generate farm management data
print("🚜 Generating farm management optimization data...")
np.random.seed(42)
# Create field data
n_fields = 25
field_data = {
'field_id': [f'Field_{i:02d}' for i in range(1, n_fields + 1)],
'size_hectares': np.random.uniform(5, 50, n_fields),
'soil_type': np.random.choice(['Clay', 'Loam', 'Sandy', 'Silt'], n_fields),
'slope_percent': np.random.uniform(0, 15, n_fields),
'irrigation_access': np.random.choice([True, False], n_fields, p=[0.7, 0.3]),
'distance_to_facility_km': np.random.uniform(0.5, 25, n_fields)
}
fields_df = pd.DataFrame(field_data)
# Create crop options with profitability and requirements
crop_options = {
'Corn': {'profit_per_ha': 1200, 'water_need': 600, 'labor_hours_per_ha': 25, 'season_length': 120},
'Soybeans': {'profit_per_ha': 800, 'water_need': 450, 'labor_hours_per_ha': 18, 'season_length': 110},
'Wheat': {'profit_per_ha': 600, 'water_need': 400, 'labor_hours_per_ha': 15, 'season_length': 200},
'Cotton': {'profit_per_ha': 1500, 'water_need': 700, 'labor_hours_per_ha': 35, 'season_length': 180},
'Tomatoes': {'profit_per_ha': 3000, 'water_need': 800, 'labor_hours_per_ha': 80, 'season_length': 100},
'Potatoes': {'profit_per_ha': 2200, 'water_need': 500, 'labor_hours_per_ha': 45, 'season_length': 90},
'Barley': {'profit_per_ha': 550, 'water_need': 350, 'labor_hours_per_ha': 12, 'season_length': 180}
}
print(f"Optimizing farm management for {len(fields_df)} fields")
# Farm constraints
farm_constraints = {
'total_labor_hours': 2000, # Available labor hours per season
'total_water_budget': 15000, # Available water (mm)
'equipment_capacity': 300, # Hectares that can be managed with current equipment
'storage_capacity': 5000, # Tons of storage capacity
'min_crop_diversity': 3 # Minimum number of different crops
}
print(f"\n🎯 Farm Optimization Analysis")
print("=" * 27)
# Field suitability analysis
def calculate_field_suitability(field_row, crop_name, crop_data):
"""Calculate field suitability score for each crop"""
score = 1.0
# Soil type preferences
soil_preferences = {
'Corn': {'Clay': 0.9, 'Loam': 1.0, 'Sandy': 0.7, 'Silt': 0.8},
'Soybeans': {'Clay': 0.8, 'Loam': 1.0, 'Sandy': 0.9, 'Silt': 0.9},
'Wheat': {'Clay': 0.7, 'Loam': 0.9, 'Sandy': 0.8, 'Silt': 1.0},
'Cotton': {'Clay': 1.0, 'Loam': 0.9, 'Sandy': 0.6, 'Silt': 0.7},
'Tomatoes': {'Clay': 0.8, 'Loam': 1.0, 'Sandy': 0.7, 'Silt': 0.8},
'Potatoes': {'Clay': 0.6, 'Loam': 0.9, 'Sandy': 1.0, 'Silt': 0.8},
'Barley': {'Clay': 0.8, 'Loam': 0.9, 'Sandy': 0.7, 'Silt': 1.0}
}
score *= soil_preferences.get(crop_name, {}).get(field_row['soil_type'], 0.8)
# Slope penalty for some crops
if crop_name in ['Tomatoes', 'Potatoes'] and field_row['slope_percent'] > 8:
score *= 0.7
# Irrigation requirement
if crop_data['water_need'] > 600 and not field_row['irrigation_access']:
score *= 0.5
# Distance penalty
if field_row['distance_to_facility_km'] > 15:
score *= 0.9
return score
# Calculate suitability matrix
suitability_matrix = []
for _, field in fields_df.iterrows():
field_suitability = {}
for crop_name, crop_data in crop_options.items():
suitability = calculate_field_suitability(field, crop_name, crop_data)
field_suitability[crop_name] = suitability
suitability_matrix.append(field_suitability)
suitability_df = pd.DataFrame(suitability_matrix, index=fields_df['field_id'])
print("Field Suitability Analysis (Top recommendations):")
for field_id in fields_df['field_id'][:5]: # Show first 5 fields
field_scores = suitability_df.loc[field_id].sort_values(ascending=False)
print(f" {field_id}: {field_scores.head(3).to_dict()}")
# Optimization algorithm (simplified greedy approach)
def optimize_crop_allocation(fields_df, crop_options, suitability_df, constraints):
"""Optimize crop allocation to maximize profit while meeting constraints"""
allocation = {}
total_profit = 0
used_labor = 0
used_water = 0
used_area = 0
crop_diversity = set()
# Sort fields by total area (largest first for better utilization)
sorted_fields = fields_df.sort_values('size_hectares', ascending=False)
for _, field in sorted_fields.iterrows():
field_id = field['field_id']
field_size = field['size_hectares']
# Get best crop for this field that fits constraints
field_suitability = suitability_df.loc[field_id].sort_values(ascending=False)
allocated = False
for crop_name, suitability in field_suitability.items():
crop_data = crop_options[crop_name]
# Check if this allocation fits within constraints
needed_labor = crop_data['labor_hours_per_ha'] * field_size
needed_water = crop_data['water_need'] * field_size
if (used_labor + needed_labor <= constraints['total_labor_hours'] and
used_water + needed_water <= constraints['total_water_budget'] and
used_area + field_size <= constraints['equipment_capacity']):
# Allocate this crop to this field
allocation[field_id] = {
'crop': crop_name,
'area_hectares': field_size,
'suitability': suitability,
'profit': crop_data['profit_per_ha'] * field_size * suitability,
'labor_hours': needed_labor,
'water_need': needed_water
}
total_profit += allocation[field_id]['profit']
used_labor += needed_labor
used_water += needed_water
used_area += field_size
crop_diversity.add(crop_name)
allocated = True
break
if not allocated:
# Field remains unallocated
allocation[field_id] = {
'crop': 'Fallow',
'area_hectares': field_size,
'suitability': 0,
'profit': 0,
'labor_hours': 0,
'water_need': 0
}
return allocation, {
'total_profit': total_profit,
'used_labor': used_labor,
'used_water': used_water,
'used_area': used_area,
'crop_diversity': len(crop_diversity)
}
# Run optimization
optimal_allocation, optimization_results = optimize_crop_allocation(
fields_df, crop_options, suitability_df, farm_constraints
)
print(f"\n📊 Optimization Results")
print("=" * 20)
print(f"Total projected profit: ${optimization_results['total_profit']:,.0f}")
print(f"Labor utilization: {optimization_results['used_labor']}/{farm_constraints['total_labor_hours']} hours ({optimization_results['used_labor']/farm_constraints['total_labor_hours']*100:.1f}%)")
print(f"Water utilization: {optimization_results['used_water']}/{farm_constraints['total_water_budget']} mm ({optimization_results['used_water']/farm_constraints['total_water_budget']*100:.1f}%)")
print(f"Area utilization: {optimization_results['used_area']:.1f}/{farm_constraints['equipment_capacity']} hectares ({optimization_results['used_area']/farm_constraints['equipment_capacity']*100:.1f}%)")
print(f"Crop diversity: {optimization_results['crop_diversity']} different crops")
# Crop allocation summary
allocation_df = pd.DataFrame(optimal_allocation).T
crop_summary = allocation_df.groupby('crop').agg({
'area_hectares': 'sum',
'profit': 'sum',
'labor_hours': 'sum',
'water_need': 'sum'
}).round(1)
print(f"\nCrop Allocation Summary:")
for crop, data in crop_summary.iterrows():
if crop != 'Fallow':
print(f" {crop}: {data['area_hectares']:.1f} ha, ${data['profit']:,.0f} profit")
# Risk analysis
print(f"\n⚠️ Risk Assessment")
print("=" * 16)
# Market risk (price volatility)
price_volatility = {
'Corn': 0.15, 'Soybeans': 0.18, 'Wheat': 0.12, 'Cotton': 0.22,
'Tomatoes': 0.35, 'Potatoes': 0.25, 'Barley': 0.10
}
# Weather risk (yield variability)
weather_risk = {
'Corn': 0.20, 'Soybeans': 0.15, 'Wheat': 0.18, 'Cotton': 0.25,
'Tomatoes': 0.30, 'Potatoes': 0.22, 'Barley': 0.12
}
# Calculate portfolio risk
portfolio_risk = 0
total_value = optimization_results['total_profit']
for crop, data in crop_summary.iterrows():
if crop != 'Fallow' and total_value > 0:
crop_weight = data['profit'] / total_value
market_risk = price_volatility.get(crop, 0.2)
yield_risk = weather_risk.get(crop, 0.2)
combined_risk = np.sqrt(market_risk**2 + yield_risk**2)
portfolio_risk += (crop_weight * combined_risk)**2
portfolio_risk = np.sqrt(portfolio_risk)
print(f"Portfolio risk assessment:")
print(f" Overall risk level: {portfolio_risk:.1%}")
print(f" Risk category: {'High' if portfolio_risk > 0.25 else 'Moderate' if portfolio_risk > 0.15 else 'Low'}")
# Diversification benefit
max_single_crop_weight = max([data['profit'] / total_value for crop, data in crop_summary.iterrows() if crop != 'Fallow'] + [0])
print(f" Largest crop exposure: {max_single_crop_weight:.1%}")
print(f" Diversification: {'Good' if max_single_crop_weight < 0.4 else 'Moderate' if max_single_crop_weight < 0.6 else 'Poor'}")
# Generate farm optimization visualization
plt.figure(figsize=(16, 12))
# Crop allocation by area
plt.subplot(3, 3, 1)
crop_areas = crop_summary[crop_summary.index != 'Fallow']['area_hectares']
crop_areas.plot(kind='pie', autopct='%1.1f%%')
plt.title('Crop Allocation by Area')
# Profit by crop
plt.subplot(3, 3, 2)
crop_profits = crop_summary[crop_summary.index != 'Fallow']['profit']
crop_profits.plot(kind='bar', color='green')
plt.title('Profit by Crop')
plt.ylabel('Profit ($)')
plt.xticks(rotation=45)
# Field suitability heatmap
plt.subplot(3, 3, 3)
# Show suitability for first few fields and crops
subset_suitability = suitability_df.iloc[:10, :5] # First 10 fields, 5 crops
plt.imshow(subset_suitability.values, cmap='RdYlGn', aspect='auto')
plt.colorbar(label='Suitability Score')
plt.title('Field-Crop Suitability Matrix')
plt.xlabel('Crop Types')
plt.ylabel('Fields')
# Resource utilization
plt.subplot(3, 3, 4)
resources = ['Labor', 'Water', 'Area']
used = [optimization_results['used_labor']/farm_constraints['total_labor_hours'],
optimization_results['used_water']/farm_constraints['total_water_budget'],
optimization_results['used_area']/farm_constraints['equipment_capacity']]
colors = ['red' if u > 0.9 else 'orange' if u > 0.7 else 'green' for u in used]
plt.bar(resources, [u*100 for u in used], color=colors)
plt.title('Resource Utilization (%)')
plt.ylabel('Utilization %')
# Profit per hectare by crop
plt.subplot(3, 3, 5)
profit_per_ha = {}
for crop, data in crop_summary.iterrows():
if crop != 'Fallow' and data['area_hectares'] > 0:
profit_per_ha[crop] = data['profit'] / data['area_hectares']
profit_series = pd.Series(profit_per_ha)
profit_series.plot(kind='bar', color='purple')
plt.title('Profit per Hectare by Crop')
plt.ylabel('Profit ($/ha)')
plt.xticks(rotation=45)
# Field size distribution
plt.subplot(3, 3, 6)
plt.hist(fields_df['size_hectares'], bins=10, alpha=0.7, color='brown')
plt.title('Field Size Distribution')
plt.xlabel('Field Size (hectares)')
plt.ylabel('Number of Fields')
# Risk vs return scatter
plt.subplot(3, 3, 7)
crop_returns = [crop_options[crop]['profit_per_ha'] for crop in crop_options.keys()]
crop_risks = [weather_risk.get(crop, 0.2) * 100 for crop in crop_options.keys()]
plt.scatter(crop_risks, crop_returns, s=100, alpha=0.7)
for i, crop in enumerate(crop_options.keys()):
plt.annotate(crop, (crop_risks[i], crop_returns[i]), fontsize=8)
plt.title('Risk vs Return by Crop')
plt.xlabel('Weather Risk (%)')
plt.ylabel('Profit ($/ha)')
# Soil type distribution
plt.subplot(3, 3, 8)
soil_counts = fields_df['soil_type'].value_counts()
soil_counts.plot(kind='bar', color='orange')
plt.title('Soil Type Distribution')
plt.ylabel('Number of Fields')
plt.xticks(rotation=45)
# Monthly cash flow projection
plt.subplot(3, 3, 9)
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',
'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
# Simplified cash flow (expenses early, income at harvest)
cash_flow = [-50000, -30000, -40000, -60000, -20000, 10000,
20000, 80000, 120000, 90000, 30000, 20000]
plt.plot(months, cash_flow, 'b-', linewidth=2)
plt.title('Projected Monthly Cash Flow')
plt.ylabel('Cash Flow ($)')
plt.xticks(rotation=45)
plt.axhline(y=0, color='red', linestyle='--', alpha=0.5)
plt.tight_layout()
plt.savefig('farm_optimization_dashboard.png', dpi=300, bbox_inches='tight')
print(f"\n📊 Farm optimization dashboard saved as 'farm_optimization_dashboard.png'")
# Sensitivity analysis
print(f"\n🔍 Sensitivity Analysis")
print("=" * 19)
# Test different scenarios
scenarios = {
'Base Case': {'price_change': 0, 'yield_change': 0, 'cost_change': 0},
'Price Drop': {'price_change': -0.15, 'yield_change': 0, 'cost_change': 0},
'Poor Weather': {'price_change': 0, 'yield_change': -0.25, 'cost_change': 0},
'Cost Increase': {'price_change': 0, 'yield_change': 0, 'cost_change': 0.20},
'Best Case': {'price_change': 0.10, 'yield_change': 0.15, 'cost_change': -0.05},
'Worst Case': {'price_change': -0.20, 'yield_change': -0.30, 'cost_change': 0.25}
}
scenario_results = {}
base_profit = optimization_results['total_profit']
for scenario_name, changes in scenarios.items():
# Adjust profits based on scenario
adjusted_profit = base_profit * (1 + changes['price_change'] + changes['yield_change'] - changes['cost_change'])
scenario_results[scenario_name] = adjusted_profit
profit_change = ((adjusted_profit - base_profit) / base_profit) * 100 if base_profit > 0 else 0
print(f" {scenario_name}: ${adjusted_profit:,.0f} ({profit_change:+.1f}%)")
# Break-even analysis
print(f"\nBreak-even Analysis:")
fixed_costs = 80000 # Estimated annual fixed costs
variable_cost_ratio = 0.60 # Variable costs as % of revenue
break_even_revenue = fixed_costs / (1 - variable_cost_ratio)
break_even_hectares = break_even_revenue / (optimization_results['total_profit'] / optimization_results['used_area'])
print(f" Break-even revenue: ${break_even_revenue:,.0f}")
print(f" Break-even area: {break_even_hectares:.1f} hectares")
print(f" Safety margin: {((optimization_results['used_area'] - break_even_hectares) / optimization_results['used_area'] * 100):.1f}%")
print(f"\n✅ Farm optimization analysis complete!")
print(f"Optimized allocation for {optimization_results['used_area']:.1f} hectares with {optimization_results['crop_diversity']} crop types")
EOF
chmod +x farm_optimizer.py
5. Run Farm Optimization Analysis
python3 farm_optimizer.py
Expected output: Comprehensive farm management optimization with resource allocation.
What You’ve Accomplished
🎉 Congratulations! You’ve successfully:
- ✅ Created an agricultural sciences research environment in the cloud
- ✅ Analyzed crop yields, weather patterns, and soil conditions
- ✅ Optimized farm management and resource allocation
- ✅ Conducted precision agriculture analysis and sustainability assessment
- ✅ Generated comprehensive agricultural management reports
Real Research Applications
Your environment can now handle:
- Crop modeling: Yield prediction, growth simulation, climate impact
- Precision agriculture: Variable rate application, sensor data analysis
- Farm optimization: Resource allocation, crop rotation planning
- Sustainability: Environmental impact, carbon sequestration, soil health
- Economic analysis: Profitability, risk assessment, market analysis
Next Steps for Advanced Research
# Install specialized agricultural packages
pip3 install crop-simulation precision-ag-toolkit farm-optimizer
# Set up agricultural databases
wget https://www.nass.usda.gov/datasets/
# Configure agricultural modeling tools
aws-research-wizard tools install --domain agricultural_sciences --advanced
Monthly Cost Estimate
For typical agricultural research usage:
- Light usage (20 hours/week): ~$250/month
- Medium usage (35 hours/week): ~$420/month
- Heavy usage (50 hours/week): ~$650/month
Clean Up Resources
Important: Always clean up to avoid unexpected charges!
# Exit your research environment
exit
# Destroy the research environment
aws-research-wizard deploy destroy --domain agricultural_sciences
Expected result: “✅ Environment destroyed successfully”
💰 Billing stops: No more charges after cleanup
Step 9: Using Your Own Agricultural Sciences Data
Instead of the tutorial data, you can analyze your own agricultural sciences datasets:
Upload Your Data
# Option 1: Upload from your local computer
scp -i ~/.ssh/id_rsa your_data_file.* ec2-user@12.34.56.78:~/agricultural_sciences-tutorial/
# Option 2: Download from your institution's server
wget https://your-institution.edu/data/research_data.csv
# Option 3: Access your AWS S3 bucket
aws s3 cp s3://your-research-bucket/agricultural_sciences-data/ . --recursive
Common Data Formats Supported
- Crop yield data (.csv, .xlsx): Farm management records and harvest data
- Soil samples (.json, .csv): Chemical composition and nutrient analysis
- Weather station data (.nc, .csv): Temperature, precipitation, and humidity records
- Satellite imagery (.tif, .hdf): MODIS, Landsat, and Sentinel agricultural monitoring
- IoT sensor data (.json, .csv): Real-time field monitoring from connected devices
Replace Tutorial Commands
Simply substitute your filenames in any tutorial command:
# Instead of tutorial data:
process_crop_yield.py sample_data.csv
# Use your data:
process_crop_yield.py YOUR_FARM_DATA.csv
Data Size Considerations
- Small datasets (<10 GB): Process directly on the instance
- Large datasets (10-100 GB): Use S3 for storage, process in chunks
- Very large datasets (>100 GB): Consider multi-node setup or data preprocessing
Troubleshooting
Common Issues
Problem: “Memory error” with large datasets Solution:
# Use larger instance type
aws-research-wizard deploy create --domain agricultural_sciences --instance-type r5.2xlarge
Problem: “sklearn not found” errors Solution:
pip3 install scikit-learn pandas numpy matplotlib seaborn
Problem: Slow processing of satellite imagery Solution:
# Install optimized geospatial tools
sudo yum install gdal gdal-devel
pip3 install rasterio geopandas --upgrade
Problem: Weather data download failures Solution:
# Check API limits and try alternative sources
curl -I https://research-data.aws-wizard.com/agriculture/
Extend and Contribute
🚀 Help us expand AWS Research Wizard!
Missing a tool or domain? We welcome suggestions for:
- New agricultural sciences software (e.g., DSSAT, APSIM, CropSyst, AgroClimate, FarmBeats)
- Additional domain packs (e.g., precision agriculture, soil science, agricultural economics, crop breeding)
- New data sources or tutorials for specific research workflows
How to contribute:
This is an open research platform - your suggestions drive our development roadmap!
Getting Help
- Agricultural Community: forum.aws-research-wizard.com/agriculture
- Technical Support: support@aws-research-wizard.com
- Sample Data: research-data.aws-wizard.com/agriculture
Emergency Stop
If something goes wrong and you want to stop all charges immediately:
aws-research-wizard emergency-stop --all
This will terminate everything and stop billing within 2 minutes.
🌾 Happy agricultural research! You now have a professional-grade agricultural sciences environment that scales with your farming and research needs.